Email updates

Keep up to date with the latest news and content from Skeletal Muscle and BioMed Central.

Open Access Research

Atypical behavior of NFATc1 in cultured intercostal myofibers

Patrick Robison, Erick O Hernández-Ochoa and Martin F Schneider*

Author Affiliations

Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N Greene Street, Baltimore, MD 21201, USA

For all author emails, please log on.

Skeletal Muscle 2014, 4:1  doi:10.1186/2044-5040-4-1

Published: 3 January 2014

Abstract

Background

The NFATc transcription factor family is responsible for coupling cytoplasmic calcium signals to transcription programs in a wide variety of cell types. In skeletal muscle, these transcription factors control the fiber type in response to muscle activity. This excitation-transcription (E-T) coupling permits functional adaptation of muscle according to use. The activity dependence of these transcription programs is sensitive to the firing patterns of the muscle, not merely the period of activity, enabling a nuanced adaptation to various functional tasks.

Methods

Isolated skeletal muscle fibers expressing exogenous fluorescent NFATc1 were studied by confocal microscopy under stimulation both with and without pharmacological inhibitors. Western blots of whole muscle lysates were also used.

Results

This study investigates the activity dependent response of NFATc1 skeletal muscle fibers cultured from mice, comparing fibers of respiratory origin to muscles responsible for limb locomotion. Using patterns of stimulation known to strongly activate NFATc1 in the commonly cultured flexor digitorum brevis and soleus muscles, we have observed significant deactivation of NFATc1 in cultured intercostal muscle fibers. This effect is at least partially dependent on the action of JNK and CaMKII in intercostal fibers.

Conclusions

Our findings highlight the role of lineage in the NFAT pathway, showing that the respiratory intercostal muscle fibers decode similar E-T coupling signals into NFAT transcriptional programs in a different manner from the more commonly studied locomotor muscles of the limbs.

Keywords:
NFATc1; Skeletal muscle; Respiratory muscle; Intercostal muscle; Excitation-transcription coupling